A class of Crouzeix-Raviart type nonconforming finite element methods for parabolic variational inequality problem with moving grid on anisotropic meshes

نویسندگان

  • Dongyang Shi
  • Hongbo Guan
  • H. Guan
چکیده

A class of Crouzeix-Raviart type nonconforming finite element methods are proposed for the parabolic variational inequality problem with moving grid on anisotropic meshes. By using some novel approaches and techniques, the same optimal error estimates are obtained as the traditional ones. It is shown that the classical regularity condition or quasi-uniform assumption on meshes is not necessary for the finite element analysis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Low Order Crouzeix-raviart Type Nonconforming Finite Element Methods for Approximating Maxwell’s Equations

The aim of this paper is to study the convergence analysis of three low order Crouzeix-Raviart type nonconforming rectangular finite elements to Maxwell’s equations, on a mixed finite element scheme and a finite element scheme, respectively. The error estimates are obtained for one of above elements with regular meshes and the other two under anisotropic meshes, which are as same as those in th...

متن کامل

On the Poincaré-Friedrichs inequality for piecewise H1 functions in anisotropic discontinuous Galerkin finite element methods

The purpose of this paper is to propose a proof for the PoincaréFriedrichs inequality for piecewise H1 functions on anisotropic meshes. By verifying suitable assumptions involved in the newly proposed proof, we show that the Poincaré-Friedrichs inequality for piecewise H1 functions holds independently of the aspect ratio which characterizes the shape-regular condition in finite element analysis...

متن کامل

Numerische Simulation Auf Massiv Parallelen Rechnern Crouzeix-raviart Type Nite Elements on Anisotropic Meshes

The paper deals with a non-conforming nite element method on a class of anisotropic meshes. The Crouzeix-Raviart element is used on triangles and tetrahedra. For rectangles and prismatic (pentahedral) elements a novel set of trial functions is proposed. Anisotropic local interpolation error estimates are derived for all these types of element and for functions from classical and weighted Sobole...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

Neumann–neumann Algorithms for a Mortar Crouzeix–raviart Element for 2nd Order Elliptic Problems

The paper proposes two scalable variants of the Neumann–Neumann algorithm for the lowest order Crouzeix–Raviart finite element or the nonconforming P1 finite element on nonmatching meshes. The overall discretization is done using a mortar technique which is based on the application of an approximate matching condition for the discrete functions, requiring function values only at the mesh interf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008